Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(4): e57366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694645

RESUMO

Background Copper and copper oxide nanoparticles synthesized by green methods have attracted considerable attention due to their environmentally friendly properties and potential applications. Green synthesis involves non-hazardous and sustainable techniques used in the production of a wide range of substances, including nanoparticles, pharmaceuticals, and chemicals. These methods often use different organisms, including bacteria, fungi, algae, and plants, each offering different advantages in terms of simplicity, cost-effectiveness, and environmental sustainability. The environmentally friendly nature of these green synthesis methods responds to the growing need for sustainable nanotechnologies. Brown algae have gained popularity due to their distinct morphological characteristics and diverse biochemical composition. This research focuses on the process of synthesizing copper and copper oxide nanoparticles from the brown algae Turbinaria. It emphasizes the natural ability of the bioactive compounds contained in the algae extract to reduce and stabilize the nanoparticles. The green synthesis of copper and copper oxide nanoparticles from brown algae has demonstrated a wide range of applications, including antibacterial activity. Materials and methods Fresh Turbinaria algae were collected from marine environments to ensure that they were free of contaminants. The algae underwent a purification process to remove impurities and were dried. An aqueous extract was prepared by pulverizing the dried algae and mixing them with distilled water. A copper salt solution utilizing copper nitrate was prepared. The algae extract was mixed with the copper salt solution. There are bioactive compounds in the algae extract that help reduce copper ions, which makes copper and copper oxide nanoparticles come together. The reaction mixture was incubated in a controlled environment to facilitate the growth and enhance the stability of the nanoparticles. To separate the nanoparticles from the reaction mixture, centrifugation was employed, or filtration was done with Whatman filter paper (Merck, Burlington, MA). The nanoparticles were dried to yield a stable powder. Results Copper and copper oxide nanoparticles derived from brown algae extract showed antibacterial effects against Streptococcus mutans, Klebsiella sp., and Staphylococcus mutans. The scanning electron microscopy (SEM) analysis verified the irregular shape and elemental content of the synthesized copper and copper oxide nanoparticles. The X-ray diffraction (XRD) analysis indicated that the synthesized nanoparticles exhibited a crystallinity nature and were composed of a mixture of copper and copper oxide species, namely face-centered cubic and monoclinic structures. The transmission electron microscopy (TEM) images showed copper and copper oxide nanoparticles that were evenly distributed and had a rectangular shape. They exhibited substantial antimicrobial activity against both Gram-positive and Gram-negative bacteria. Conclusions This study enhances the field of green synthesis techniques by showcasing the adaptability of Turbinaria brown algae to synthesize copper and copper oxide nanoparticles. It underscores the potential advantages of these nanoparticles in terms of their antibacterial properties.

2.
Cureus ; 16(3): e56680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646316

RESUMO

Introduction Marine actinobacteria are promising sources of novel bioactive compounds due to their distinct ecological niches and diverse secondary metabolite production capabilities. Among these, Microbispora sp. T3S11 is notable for its unique spore chain structure, which allows for both morphological and genetic identification. Despite its potential, little is understood about the secondary metabolites produced by this strain. In this study, we hope to fill this gap by extracting and analyzing the antibacterial activities of secondary metabolites from Microbispora sp. T3S11, which will be the first time its bioactive compound profile is investigated. Aim To evaluate the antibacterial activity of secondary metabolites isolated from the marine actinobacterium Microbispora sp. T3S11. Materials and methods The antibacterial assays were carried out on agar plates containing the appropriate media for each pathogen. Sterile filter paper disks were impregnated with secondary metabolites extracted from Microbispora sp. T3S11 and placed on the surface of agar plates inoculated with the appropriate pathogens. Similarly, disks containing tetracycline were used as a positive control. The plates were then incubated at the appropriate temperature for each pathogen, and the zones of inhibition around the disks were measured to determine the extracted metabolites' antibacterial activity. Result Secondary metabolites had antimicrobial activity against Streptococcus mutans, Klebsiella pneumonia, and methicillin-resistant Staphylococcus aureus (MRSA). The inhibition of S. mutans was 7.5 mm and 8.5 mm at 75 µg/mL and 100 µg/mL, respectively. Klebsiella pneumonia zones measured 7 mm and 7.5 mm, while MRSA zones measured 7.6 mm and 8.5 mm at the same concentrations. Tetracycline, the standard antibiotic, had larger inhibition zones: 22 mm for S. mutans and Klebsiella pneumonia and 16 mm for MRSA, indicating variable susceptibility. Conclusion We conclude that the secondary metabolites extracted from Microbispora sp. T3S11 exhibits high antibacterial activity. This could be attributed to the presence of various active compounds.

4.
Cureus ; 16(2): e54124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38487111

RESUMO

BACKGROUND: In today's world, antibiotic-resistant microorganisms are a major concern. There is solid evidence that metal nanoparticles (NPs) tend to have antimicrobial properties. The most effective substitute for antibiotic resistance is the incorporation of metal NPs. The antibacterial properties of NPs are currently being explored and shown to be successful. Zinc (Zn) NPs that are biosynthesized from marine Actinobacterium proved to be more biocompatible, bioactive, and affordable.  Aim: This study aims to investigate the synthesis of ZnNPs from Actinobacterium Streptomyces species and their antimicrobial effects against gram-positive and gram-negative bacteria. MATERIALS AND METHODS: The current study uses natural, considerably safer processes to synthesize ZnNPs from marine Actinobacteria with little to no negative side effects. It involves sample collection, identification, and isolation of Actinobacterium Streptomyces species. The isolated sample was air-dried, and extracts of ZnNPs were taken. Among the isolates from marine sediment, two Actinobacteria that generate bioactive secondary metabolites-Streptomyces species (MOSEL-ME28) and Rhodococcus rhodochrous (MOSEL-ME29)-were selected for extracellular synthesis of ZnNPs. The antimicrobial activity of the biosynthesized ZnNPs from marine Actinobacteria was analyzed against Staphylococcus (MRSA), Klebsiella pneumoniae, and Streptococcus mutans. The results were statistically analyzed and graphs were created. RESULTS: ZnNPs obtained from Actinobacterium Streptomyces species exhibited antimicrobial effects against Staphylococcus (MRSA), Klebsiella, and Streptococcus mutans. At 280 nm wavelength, analysis of the UV spectrum showed a notable absorbance value of 1.8. The antibacterial efficacy against Staphylococcus MRSA, Klebsiella species, and Streptococcus mutans was assessed by measuring the zone of inhibition in diameter. The zones of inhibition were 8, 8, and 7 mm on the evaluation for Streptococcus mutans, S. aureus, and Klebsiella species, respectively, at a dose of 75 µg/mL. When the dosage was increased to 100 µg/mL, the inhibition zones were found to be 9.5, 9, and 7.5 mm for the respective bacterial strains. CONCLUSION: ZnNPs are biosynthesized from marine Actinobacterium Streptomyces species in this research study. They have a significant antimicrobial activity against both gram-positive and negative bacteria. This indicates that ZnNPs have enormous antimicrobial potential and have an extensive spectrum of applications. However, clinical trials must be completed before it can be used safely on patients.

5.
Mar Pollut Bull ; 200: 116139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367585

RESUMO

Heavy metal pollution has significant impacts on aquatic fauna and flora. It accumulates in marine organisms, both plants and animals, which are then consumed by humans. This can lead to various health problems, such as organ damage and the development of cancer. Additionally, this pollution causes biological magnification, where the toxicity concentration gradually increases as aquatic organisms continuously accumulate metals. This process results in apoptotic mechanisms, antioxidant defence, and inflammation, which are reflected at the gene expression level. However, there is limited research on specific heavy metals and their effects on fish organs. The concentration of metal contamination and accumulation in different tropical environments is a concern due to their toxicity to living organisms. Therefore, this review focuses on determining the influences of metals on fish and their effects on specific organs, including DNA alterations.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Organismos Aquáticos/metabolismo , Poluentes Químicos da Água/análise , Metais Pesados/análise , Peixes/metabolismo , Dano ao DNA , Monitoramento Ambiental
6.
Environ Res ; 244: 118000, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128601

RESUMO

The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.


Assuntos
Extremófilos , Metais Pesados , Consórcios Microbianos , Radiação de Fundo , Radioisótopos/análise , Radioisótopos/farmacologia , Metais Pesados/análise , Bactérias , Índia , Sedimentos Geológicos
7.
RSC Adv ; 13(51): 36223-36241, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090077

RESUMO

The widespread use of plastics, popular for their versatility and cost-efficiency in mass production, has led to their essential role in modern society. Their remarkable attributes, such as flexibility, mechanical strength, lightweight, and affordability, have further strengthened their importance. However, the emergence of microplastics (MPs), minute plastic particles, has raised environmental concerns. Over the last decade, numerous studies have uncovered MPs of varying sizes in diverse environments. They primarily originate from textile fibres and cosmetic products, with large plastic items undergoing degradation and contributing as secondary sources. The bioaccumulation of MPs, with potential ingestion by humans through the food chain, underscores their significance as environmental contaminants. Therefore, continuous monitoring of environmental and food samples is imperative. A range of spectroscopic techniques, including vibrational spectroscopy, Raman spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, hyperspectral imaging, and nuclear magnetic resonance (NMR) spectroscopy, facilitates the detection of MPs. This review offers a comprehensive overview of the analytical methods employed for sample collection, characterization, and analysis of MPs. It also emphasizes the crucial criteria for selecting practical and standardized techniques for the detection of MPs. Despite advancements, challenges persist in this field, and this review suggests potential strategies to address these limitations. The development of effective protocols for the accurate identification and quantification of MPs in real-world samples is of paramount importance. This review further highlights the accumulation of microplastics in various edible species, such as crabs, pelagic fish, finfish, shellfish, American oysters, and mussels, shedding light on the extreme implications of MPs on our food chain.

8.
Cureus ; 15(11): e49316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38143665

RESUMO

AIM: Silver nanoparticles (AgNPs) are considered to be a very significant and intriguing type within the category of metallic nanoparticles, particularly in the context of their involvement in biological applications. The objective of this research is to use the green synthesis method in order to synthesize AgNPs by using the leaf extract of C. rotundata. Furthermore, the study aims to evaluate the antioxidant and anti-inflammatory properties of these nanoparticles. MATERIALS AND METHODS: Fresh and healthy specimens of C. rotundata were gathered from Palk Bay, Tamil Nadu, India, and afterward subjected to a thorough washing process using tap water. The cleaned materials were air-dried and then fragmented into small bits and finely ground. The ethanolic extract of seagrass was then combined with a solution containing 1 millimolar (mM) silver nitrate (AgNo3). The decrease of silver ions in the solution was frequently measured using a UV-visible spectrophotometer. Synthesized AgNPs were investigated for antioxidants by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and anti-inflammatory activity was measured by protein-denaturation assay. RESULTS: The use of C. rotundata leaf extract in the green synthesis of AgNPs, in the presence of 1 mM AgNO3, led to a noticeable alteration in the colour of the mixture, transitioning from a pale hue to a brown shade. This change in colour serves as evidence of the reduction of AgNo3 ions to silver ions, thereby facilitating the creation of AgNPs. The duration of the bio-reduction process of silver ions in the reaction mixture was observed to be two hours. The antioxidant and anti-inflammatory activity showed promising activity for AgNPs. CONCLUSION: This study concluded that C. rotundata had antioxidant capabilities, and AgNPs derived from C. rotundata have potential use in pharmaceuticals and medication administration.

9.
Mar Pollut Bull ; 195: 115464, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666137

RESUMO

Seafood is a valuable nutritional source, but it is highly susceptible to bacterial contamination, posing a severe health risk to humans. Enterotoxin-producing genes carrying Staphylococcus sp. are a significant concern in marine fish. This study aimed to investigate the prevalence of enterotoxin genes in Staphylococcus sp. isolated from 17 common fish species and emphasise the need for improving seafood quality and hygiene. The potential risks of contamination by enterotoxin-producing Staphylococcus sp. were assessed. The results indicated the risk associated with the consumption of contaminated seafood, especially from marketed and frozen samples. Gene expression analysis on a heat map revealed that samples stored in markets are heavily loaded with Staphylococcus enterotoxin genes due to the unhygienic water that was used from the local markets for fish processing. To enhance seafood quality, effective measures on handling and storage should be regularly monitored, and they must be implemented throughout the local seafood markets.


Assuntos
Enterotoxinas , Staphylococcus , Humanos , Staphylococcus/genética , Enterotoxinas/genética , Enterotoxinas/análise , Alimentos Marinhos/análise , Prevalência , Contaminação de Alimentos/análise
10.
Environ Pollut ; 323: 121314, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813100

RESUMO

The present study aimed to determine the extended spectrum beta lactamase (ESBL) genes in the bacteria from fresh exportable fish samples collected along South east coast of India, Chennai. ESBL genes are the base for the antibiotic resistance in pathogens and it transmitted from one to other species. Totally 2670 isolates were isolated from 293 fish samples which belong to 31 species dominated by Aeromonas, Klebsiella, Serratia, Leclerica, Proteus, Enterobacter, Acinetobacter, Haemophilus, Escherichia, Shigella sp. Out of 2670 isolates, 1958 isolates have multi drug resistant capacity with ESBL genes of blaCTX, blaSHV, blaTEM and blaAmpC and 712 isolates are not detected ESBL genes. The present study revealed that, the contamination of fresh fish sample with pathogenic bacteria resistant to multiple antibiotics can incriminate seafood as a potential carrier and accentuate an immediate need to prevent environmental infectivity and distribution. Further, hygienic facilitated markets should be developed with ensured quality of seafood.


Assuntos
Antibacterianos , beta-Lactamases , Animais , beta-Lactamases/genética , Índia , Enterobacter
11.
Biotechnol Appl Biochem ; 70(3): 1346-1356, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36724497

RESUMO

In the present study, the green synthesis of silver nanoparticles (AgNPs) using ethanol extract of Cymodocea serrulata and biological activity were investigated by UV-visible spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), x-ray powder diffraction (XRD), and scanning electron microscopy. The results show that nanoparticles synthesized were confirmed by color change from green to dark brown. The XRD analysis confirmed that the AgNPs were crystalline and found that their UV maximum specific absorbance was between 200 and 400 nm, and their field emission scanning electron microscopy size was between 60 and 69 nm. FTIR studies identified different functional groups involved in the potential capping of AgNPs. The antidiabetic activity of the AgNPs was tested by the inhibition of carbohydrate digestive enzymes (a-glucosidase and amylase). In addition, it has exhibited potential anticancer activity against breast cancer cells (MDF7). Hence, the present result warrants ecofriendly and efficient method in the synthesis of AgNPs, which can act as an alternative biomaterial for biomedical applications.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Neoplasias da Mama , Antineoplásicos/química , Antineoplásicos/farmacocinética
12.
Environ Res ; 216(Pt 1): 114334, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162475

RESUMO

Temperature can be considered as pro-oxidant factor that favor the generation of ROS on the species with lower antioxidant efficiency may leads to affect the level of tolerance. So the basic antioxidant enzyme activity (LPO, CAT, SOD, GPx and GST) of gastropod Nerita oryzarum was evaluated at six stations which located between the thermal effluent discharges points from Tarapur Atomic Power Station, India. The antioxidant enzyme activity was shown that all enzyme at discharge point (SII station) where the maximum temperature of heated effluent released. The average maximum values of enzyme activity recorded for LPO, CAT, SOD, GPx and GST were 1.88 ± 0.12, 1.52 ± 0.14, 22.57 ± 0.89, 1.98 ± 0.2 and 17.22 ± 0.63 respectively. The results were inferred the level water temperature directly proportional to the oxidative stress by ROS generation in Nerita oryzarum. Similar results were observed at laboratory experiment under the condition i.e., Treatment 1 (300C), Treatment 2 (350C), Treatment 3 (400C) and Control (250C). The present prima facie work clearly indicated the physiological response of N. oryzarum with respect to antioxidant enzyme activity against the heated effluent released, which will be useful as baseline information for future research work.


Assuntos
Antioxidantes , Gastrópodes , Animais , Antioxidantes/metabolismo , Gastrópodes/metabolismo , Temperatura , Espécies Reativas de Oxigênio , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Centrais Elétricas , Catalase/metabolismo
16.
Environ Res ; 212(Pt A): 113135, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35364041

RESUMO

Baseline assessments of marine microbial studies are very limited around ecologically sensitive areas of the Nuclear Power Plant (NPP) site with respect to their occurrence, distribution, role in adaptation, and their potential remediation process. The distribution and diversity of marine microbes are largely dependent on the physicochemical parameters relating to a specific area, especially spore-producing marine actinobacteria are a source for indigenous bioremediation agents. Marine actinobacterial diversity with conventional and 16 S rRNA gene analysis was done with different pre-treatment conditions and selective media. Totally, 170 different strains are identified in genera level and it belongs to 18 genera with dominant by Streptomyces sp. (75species) followed by Nocardiposis sp, (18species) Rhodococcus sp. (14species). Multiple k-dominance plots simplified the perception of marine actinobacteria according to genera level influence to standard stock. This is the first kind of study in India and the results could act as baseline inventory in terms of microbial diversity around NPP sites. Further, a potential strain of Actinomadura sp. (T5S13) produced 243.7 mg/L of EPS and remediate the Uranium radionuclides. The functional group shifting and adsorption nature were also confirmed by SEM with EDS analysis.


Assuntos
Actinobacteria , Urânio , Actinobacteria/genética , Bactérias/genética , DNA Bacteriano , Centrais Nucleares , Filogenia , RNA Ribossômico 16S/genética
17.
Mar Pollut Bull ; 174: 113188, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856431

RESUMO

In this study, we reported Shiga toxin-producing Escherichia coli (STEC) in 847 samples, including those in coastal waters, sediments, and fish samples in the Southeast Coast of India. A total of 3742 E. coli strains were identified using conventional and molecular identification methods. Of these, 1518 isolates expressed virulent genes Stx1, Stx2, and Eae; effects on these genes on toxicity were examined. Furthermore, 2224 non-STEC isolates caused hemolytic uremic syndrome and played a key role in the persistence of STEC contamination. We conclude that toxin production is not adequate to cause disease, and the pathogenic mechanism of STEC remains poorly defined. Therefore, the present study indicates the status of pollution, highlighting the need for sanitation in public health.


Assuntos
Proteínas de Escherichia coli , Água do Mar/microbiologia , Escherichia coli Shiga Toxigênica , Animais , Proteínas de Escherichia coli/genética , Peixes/microbiologia , Sedimentos Geológicos/microbiologia , Índia , Toxina Shiga , Toxina Shiga I/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação
18.
J Adv Pharm Technol Res ; 13(Suppl 1): S93-S97, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36643101

RESUMO

The enriched nutritional and functional properties of inulinase with wide attention are considered commercial/industrial food enzymes. It can be produced by many microorganisms such as yeasts, fungi, and bacteria. Nocardiopsis is a genus under Actinomycetes, which has biotechnologically important microorganisms. This study aims to isolate and identify marine Actinomycetes Nocardiopsis species and to evaluate the antibacterial potential of the inulinase enzyme obtained from it. Marine actinobacteria (Nocardiopsis sp.) were isolated from sediment samples on YM agar. The isolate was identified by biochemical analysis of cell walls (amino acid and sugar). Enzyme screening assay was performed with temperature and pH influence in the production inulinase enzyme production. Antibacterial activity and minimal inhibitory activity of inulinase enzyme were performed with Staphylococcus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrobial testing revealed that with higher concentrations of inulinase enzyme, the zone of inhibition of bacterial growth increased, and the minimum inhibitory concentration of inulinase enzyme that prevented the growth of bacteria was close to the standard tetracycline. Inulinase enzyme obtained from Nocardiopsis species shows good antibacterial activity against Staphylococcus aureus, K. pneumoniae, and P. aeruginosa in comparison to the standard, tetracycline.

19.
J Adv Pharm Technol Res ; 13(Suppl 1): S125-S129, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36643110

RESUMO

To check the ability of the anticancer activity, the extracted extracellular polymeric substances (EPS) from marine actinobacteria were done. Potential of the anticancer activity of EPS which was extracted from marine actinobacteria of Streptomyces species through an assay called MTT. Marine actinobacterial isolation, identification and micromorphology of the strain, and biochemical analysis were performed (Shirling and Gottlieb, 1966). The production of EPS from marine actinobacteria was quantified(P. Sivaperumal et al., 2018). Carbohydrate content in the EPS was quantified, and MCF-7 cell proliferation was done using an MTT assay. EPS-producing marine Streptomyces was isolated and identified. The production of EPS and their protein, carbohydrate, lipid, and other parameters were estimated. Further, the EPS showed more than 50% of inhibition after 72 h using the MTT assay in the MCF-7 cancer cell line. The present study exhibited that EPS from marine Streptomyces species has significant anticancer activity.

20.
J Adv Pharm Technol Res ; 13(Suppl 1): S76-S79, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36643113

RESUMO

Marine actinobacteriological investigation is still in its beginning in India. Earlier, in the 20th century, studies on Actinobacteria were started and highly concentrated on diversity, identification, and screening for enzymes, antibiotics, and enzyme inhibitors. With the spurge of infectious diseases requiring antibiotics, novel antibiotics are in search as the prevalent ones have declined uses, due to the antibiotic-resistant microbial growth. Unexploited ecosystems are studied for isolation of rare species such as Actinobacteria which are expected to yield newer metabolites. The marine actinobacterial isolation and enumeration were done from sediment samples. The marine Actinobacteria were identified by conventional methods. Further amylase enzyme production and their antibacterial activities are also done following the standard methods. The Micromonospora sp. was identified by chemotaxonomical characteristics and spore chain morphology. Further, the amylase enzyme production was done and quantification of enzyme also done. The potential antimicrobial activity from the amylase enzyme was done. Zone of inhibition and minimal inhibitory concentration were calculated. It concluded that potent antibacterial activity was obtained from Actinobacteria Micromonospora sp. producing amylase enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA